Sunday, September 8, 2019

From Disorder to Order Transition.


From Disorder to Order Transition.
Disorder is the order of the Universe.
Order is the rare occurrence seen only in biological systems.
But this order has come painfully slow even in Evolution.

I would like to go step backward and look at the Symbiosis.

Symbiosis preceded the evolution by eons of years.

Symbiosis did not need elaborate genetic cord (which evolution’s prerequisite).
It needed only meeting of two cells of common interest.
Meeting of opposing cells and parasitism came much later.
The sex differentiation also came much later and symbiosis is not precluded by absence of cells.
I want to go much further back to primordial proteins and not the structured genetically coded protein.
Random association of amino acids could give rise peptide cords without the need for enzymes (again proteins).
Calcium outside layer.
Denatured protein layer
Protein layer mixed with fatty acid chains.
More fatty acids and less proteins.
Bilipid membrane with embedded protein receptors.
Protein can accept protein of another symbiotic cell by random association.
There is a protein called HSP or Heat Shock Protein.
This protien is seen in prokaryotes and eukaryotes.
HSP probably is the result of development of resistance to heat stress stroke in evolution of cells.
There is another protein called CRP or C Reactive Protein that is formed in the liver under stressful conditions.
In other words proteins in evolution have responded not only to heat but any stressful condition.
Protein selection embedded in membranes was probably a prerequisite for symbiosis long before receptor formation for specific function (Antigen and Antibody Reactions).
Heat shock proteins (HSP) are a family of proteins that are produced by cells in response to exposure to stressful conditions. They were first described in relation to heat shock, but are now known to also be expressed during other stresses including exposure to cold, UV light and during wound healing or tissue remodeling. Many members of this group perform chaperone functions by stabilizing new proteins to ensure correct folding or by helping to refold proteins that were damaged by the cell stress. This increase in expression is transcriptionally regulated. The dramatic upregulation of the heat shock proteins is a key part of the heat shock response and is induced primarily by heat shock factor (HSF). HSPs are found in virtually all living organisms, from bacteria to humans.
Heat-shock proteins are named according to their molecular weight. For example, Hsp60, Hsp70 and Hsp90 (the most widely studied HSPs) refer to families of heat shock proteins on the order of 60, 70 and 90 kilodaltons in size, respectively. The small 8-kilodalton protein ubiquitin, which marks proteins for degradation, also has features of a heat shock protein. A conserved protein binding domain of approximately 80 amino-acid alpha crystallins are known as small heat shock proteins (sHSP).
C-reactive protein (CRP) is an annular (ring-shaped), pentameric protein found in blood plasma, whose circulating concentrations rise in response to inflammation. It is an acute-phase protein of hepatic origin that increases following interleukin-6 secretion by macrophages and T cells. Its physiological role is to bind to lysophosphatidylcholine expressed on the surface of dead or dying cells (and some types of bacteria) in order to activate the complement system via C1q.
CRP is synthesized by the liver in response to factors released by macrophages and fat cells (adipocytes). It is a member of the pentraxin family of proteins. It is not related to C-peptide (insulin) or protein C (blood coagulation). C-reactive protein was the first pattern recognition receptor (PRR) to be identified.

Function

CRP binds to the phosphocholine expressed on the surface of dead or dying cells and some bacteria. This activates the complement system, promoting phagocytosis by macrophages, which clears necrotic and apoptotic cells and bacteria.
This so-called acute phase response occurs as a result of increasing concentrations of IL-6, which is produced by macrophages as well as adipocytes in response to a wide range of acute and chronic inflammatory conditions such as bacterial, viral, or fungal infections; rheumatic and other inflammatory diseases; malignancy; and tissue injury and necrosis. These conditions cause release of interleukin-6 and other cytokines that trigger the synthesis of CRP and fibrinogen by the liver.
CRP binds to phosphocholine on micro-organisms. It is thought to assist in complement binding to foreign and damaged cells and enhances phagocytosis by macrophages (opsonin-mediated phagocytosis), which express a receptor for CRP. It plays a role in innate immunity as an early defence system against infections.
Amyloids are aggregates of proteins that become folded into a shape that allows many copies of that protein to stick together, forming fibrils. In the human body, amyloids have been linked to the development of various diseases. Pathogenic amyloids form when previously healthy proteins lose their normal physiological functions and form fibrous deposits in plaques around cells which can disrupt the healthy function of tissues and organs.
Such amyloids have been associated with (but not necessarily as the cause of) more than 50 human diseases, known as amyloidosis, and may play a role in some neurodegenerative disorders. Some amyloid proteins are infectious; these are called prions in which the infectious form can act as a template to convert other non-infectious proteins into infectious form. Amyloids may also have normal biological functions; for example, in the formation of fimbriae in some genera of bacteria, transmission of epigenetic traits in fungi, as well as pigment deposition and hormone release in humans.
Amyloids have been known to arise from many different proteins. These polypeptide chains generally form β-sheet structures that aggregate into long fibers; however, identical polypeptides can fold into multiple distinct amyloid conformations. The diversity of the conformations may have led to different forms of the prion diseases.




No comments:

Post a Comment